Results of a New Treatment Concept for Concomitant Lesion of Medial Collateral Ligament in Patients with Rupture of Anterior Cruciate Ligament

Fabian Blanke, MD1 Jochen Paul, MD2 Maximilian Haenle, MD1 Jannes Sailer, MD3 Geert Pagenstert, MD3 Lutz von Wehren, MD4 Stephan Vogt, MD1 Martin Majewski, MD, MBA4

1 Department of Orthopaedic Sports Medicine and Arthroscopic Surgery, Hessing Stiftung Augsburg, Augsburg, Germany
2 Department of Orthopaedic Sports Medicine and Arthroscopic Surgery, Rennbahnklinik Muttenz, Basel, Germany
3 Department of Orthopaedic Surgery, University Hospital Basel, Basel, Switzerland
4 Department of Orthopaedic Surgery, Hospital Oberengadin, Samedan, Switzerland

Address for correspondence Fabian Blanke, MD, Department of Orthopaedic Sports Medicine and Arthroscopic Surgery, Hessing Stiftung Augsburg, Hessingstraße 17, Augsburg 86199, Germany (e-mail: Fabian.Blanke@hessing-stiftung.de).

Abstract

Anteromedial knee injury with rupture of anterior cruciate ligament (ACL) and concomitant lesion of medial collateral ligament (MCL) is common in athletes. No standardized treatment concept can be found within the literature. This study presents results of a new treatment concept for concomitant MCL lesions in patients with ACL rupture. In this study, 67 recreational athletes with ACL injury and concomitant MCL lesion were treated according to a distinct treatment concept. Patients were classified in six different types of concomitant MCL lesion depending on grade of MCL lesion and presence of anteromedial rotatory instability (AMRI). Final classification and surgical indication were determined 6 weeks posttraumatic. All patients received ACL reconstruction. MCL was treated by surgical or conservative regime due to type of concomitant MCL lesion. International Knee Documentation Committee (IKDC), AMRI, and Lysholm scores were evaluated both preoperatively and after 6 weeks, 16 weeks, 12 months, and 18 months postoperatively. All patients could be uniquely classified and treated according to the introduced treatment concept. AMRI was verifiable in patients with grade II and III MCL lesions. All patients showed good to excellent clinical results at the follow-up examinations. In all 67 patients (100%), the findings were graded as normal or nearly normal according to the IKDC knee examination form. Lysholm score averaged 93.9 at final follow-up. The introduced treatment concept showed good results on short-term outcome and provides a sufficient treatment strategy for concomitant MCL lesions in athletes with ACL rupture.

Keywords
► anterior cruciate ligament
► medial collateral ligament
► AMRI
► treatment concept

The medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) are the most commonly injured ligaments of the knee.1 Anteromedial knee injury with a rupture of the ACL and concomitant lesion of the MCL is common, especially in athletes. While surgical treatment of an ACL injury is well established to allow individuals to return to demanding activities, the treatment of concomitant MCL lesions is discussed controversially in the literature.2-4 Conservative
treatment of concomitant grade I MCL injuries is generally advised. However, the treatment regime of concomitant grade II and III MCL lesions is inconsistent with different treatment strategies. Currently, standardized diagnostics and treatment guidance for concomitant MCL lesions do not exist in the literature. Inadequate treatment of concomitant MCL injury can, however, lead to a persistent instability. Therefore, treatment guidance with other clinical parameters which could help in treatment decision is required. Furthermore, anteromedial rotatory instability (AMRI) is a frequent complication in combined ACL/MCL injuries with an increasing incidence according to the degree of MCL lesion and reflects the severity of instability. The value of AMRI in the treatment decision of concomitant MCL lesions nevertheless is still uncertain. However, the presence of AMRI might be an important factor in decision making for or against surgical treatment. In this article, it was hypothesized that AMRI is the crucial clinical factor to differentiate between surgical and nonsurgical treatment of concomitant MCL lesions. Therefore, a new treatment concept for concomitant MCL lesions with a special focus of AMRI was evaluated retrospectively to develop an injury classification and treatment algorithm.

Materials and Methods

A total of 67 recreational athletes who sustained an acute ACL rupture and a concomitant MCL lesion were investigated retrospectively. Patients with nonoperatively treated ACL injury, osteoarthritis (Kellgren-Lawrence grade ≥ 2), concomitant meniscal or chondral lesion, history of other knee injuries or of surgical treatment of lower extremity, and patients with general diseases (e.g., rheumatoid arthritis) were excluded from the study. These 67 patients included 32 men and 35 women with a median age of 39 years (range: 19–66 years) at the time of surgery. All causes of injury were sports-related injuries. Types of sports included alpine skiing, ice hockey, cross country skiing, and soccer. All patients underwent a specific diagnostic workup with a diagnosis of the degree of MCL lesion and presence or absence of AMRI. In addition to a single-bundle ACL reconstruction, conservative or surgical treatment of the MCL (described later) was performed according to a distinct treatment concept. Indications were determined 6 weeks after the initial injury and a period of rehabilitation. All surgeries were performed by senior surgeons and the same protocol was used for the postoperative rehabilitation. All patients were followed up with detailed data collection after 6 weeks, 3 months, 1 year, and 1.5 years postoperative. Descriptive statistics were used to display the postoperative outcome results. This retrospective study has been approved by the Institutional Review Board (University Hospital Basel, Switzerland, ID 191/11) before commencement.

Clinical Evaluation

Preoperative and in the follow-up visits, all patients underwent an examination with the valgus stress test, Lachman test, Slocum drawer test, valgus stress test in full extension, pivot shift test, and range-of-motion (ROM) assessment; in addition, the International Knee Documentation Committee (IKDC) scores and AMRI were evaluated. Valgus stress testing and the classification of the degree of MCL lesion were done according to Fetto and Marshall. Fetto and Marshall defined their grade I injuries as those without valgus laxity in both 0 and 30 degrees of flexion, grade II injuries as those with a valgus laxity in 30 degrees of flexion but stable in 0 degrees of flexion, and grade III as those with a valgus laxity in both 0 and 30 degrees of flexion. A positive Slocum drawer test was detected by performing the anterior-drawer test while holding the tibia in external rotation. A positive Slocum drawer test, any evidence of anterior subluxation of the medial tibial plateau during the valgus stress test with the knee in 30 degrees of flexion, or an increasing medial instability under valgus stress in full extension indicated the presence of AMRI. The valgus stress test with the knee in 30 degrees of flexion was performed with the examiner’s hand on the anterior border of the tibia plateau. Anterior movement of the tibia plateau while applying valgus stress to the knee indicated AMRI. Valgus stress test in full extension was used because the ACL acts as an important valgus stabilizer in full extension. An increasing medial instability in full extension clearly stands for complete rupture of the medial sided structures with combined rupture of the ACL and consequently the presence of AMRI. Concerning the overall evaluation of the knee, the IKDC evaluation form and the Lysholm-Knee scoring scale were used to evaluate the postoperative knee function such as symptoms, stability, and functional changes in sports and daily activities.

Treatment Concept

The patients were classified in six different types of concomitant MCL lesion depending on the degree of MCL lesion and the presence or absence of AMRI. According to the degree of MCL lesion, patients were primarily divided into injury types I to III. Depending on the presence of AMRI, these types were subclassified in A-type lesion (AMRI absent) or b-type lesion (AMRI present). After 6 weeks, a final examination with the conclusive definition of injury type was performed and the surgical indications for the MCL were determined. All patients received an ACL reconstruction afterward. In patients with a MCL injury types Ia, Ila, and IIa, the MCL lesion was treated conservatively. In patients with a presence of AMRI (injury types Ib, Iib, and Iibb), the concomitant MCL lesion was treated operatively.

Surgical Procedure

All patients in this study received an ACL reconstruction (semitendinosus tendon autograft). In patients with a MCL injury types Ib, Iib, and Iibb, a surgical treatment of the MCL was additionally performed in a standardized technique. After the knee was examined under general anesthesia, a routine diagnostic arthroscopic procedure was performed through an anterolateral portal with the tourniquet inflated to 300 mm Hg. Longitudinal incision was made over the pes anserinus with cranial extension to prepare the distal and medial part of the MCL as well as the semitendinosus tendon.
The MCL was then detached distally and the tibial plateau was debrided with cortical microfracturing. Single-bundle ACL reconstruction was performed by anteromedial drilling for the femoral socket followed by tibial drilling. The tibial socket preparation was done by retrograde drilling (FlipCutter, Arthrex, Naples, FL). Femoral and tibial fixation was secured in Tight-Rope technique (ACL Tight Rope, Arthrex). After the ACL reconstruction, a subtle preparation of the MCL was performed and the distal part of the MCL was doubled and loaded with two fiber wire sutures in circumferential cross-stitch technique. Then the MCL was tensioned and pulled distally while continuous varus stress was applied to the ipsilateral knee joint. The MCL was reattached with one or two blocking screws within the foot print area and excessive ligamentous material was removed (Fig. 1). Proximal avulsion fractures were treated by an additional screw fixation. Finally, the above layers were reconstructed to allow regular healing and prevent a consecutive tissue adhesion. The treatment of an injured posteromedial corner (PMC) was performed by posteromedial plication with a tensioning of the capsule in the anterior and proximal direction according to the technique described by Hughston.

Nonsurgical Procedure

In Patients with a MCL injury types Ia, IIa, and IIIa, the concomitant MCL lesions were treated by a knee brace with weight bearing as tolerated and crutches for initial pain relief. The patient was allowed to start isometric and ROM exercises within flexion from 90 to 10 degrees (F/E: 0–10–90 degrees) immediately. After 2 weeks, the extension was unlimited and after 4 weeks unlimited flexion was approved. Crutches were discontinued when the patient was able to demonstrate a limp-free walk. Anti-inflammatory medication was prescribed for 14 days.

Postoperative Care and Rehabilitation

For all patients, a compressive ice wrap was applied within the first 24 to 48 hours after surgery, to minimize swelling. All patients were allowed to have an active-assisted or passive mobilization allowing F/E 0–10–70 degrees of ROM 24 hours after surgery. During the first 4 weeks, weight bearing with 20 kg was permitted and the knee was protected with a knee brace allowing the aforementioned ROM. From 4 to 6 weeks, the patients were allowed to perform active ROM exercises and weight bearing was permitted within the patients’ tolerance. After 6 weeks, mobilization with full ROM was allowed. After 3 months, the patients started progressive activities and were weaned off brace use gradually.

Results

All patients could be uniquely classified and treated according to the introduced treatment concept. Several patients showed a downgrading of the MCL lesion after 6 weeks compared with the posttraumatic situation (Table 1). At the final classification after 6 weeks, none of the patients showed an injury type IIIa. Therefore, none of the patients with a MCL lesion type I showed AMRI, whereas all patients with type III MCL lesions had evidence of AMRI. These results led to the proposal of a definitive treatment algorithm for patients with an ACL/MCL injury (Fig. 2).

Functional Results

The medial stability had distinctly improved at the 18-month follow-up with valgus instability grade A in 64 out of 67 patients (96%) and grade B in the remaining 3 patients (4%) according to IKDC. Seventeen patients (25%) showed grade C and 16 patients (24%) showed grade D valgus instability preoperatively. The incidence of AMRI could be reduced from 40% (27/67 patients) before therapy to 0% (0/67 patients) at the final follow-up examination (Tables 2 and 3). At the final follow-up, all patients had no problems in activities of daily life with normal or nearly normal ROM (Table 2). Sixty-two patients (93%) reached full ROM in flexion and extension equivalent to grade A according to the IKDC score. Four patients (6%) had persistent lack of up to 15-degree flexion compared with the opposite side and two patients (3%) showed a lack of 5-degree extension in the recent follow-up, whereas one patient had both flexion and extension deficiency after the treatment. All the 67 patients had returned to performing at a normal (grade A, 87%) or nearly normal (grade B, 13%) level of sports, whereas 66% of patients (44/67) showed grade C and 34% (23/67) grade D according to IKDC score preoperative (Table 2). The median

Table 1 Distribution of types of concomitant MCL lesion initially and after 6 weeks

<table>
<thead>
<tr>
<th>Concomitant MCL lesion (type)</th>
<th>Posttraumatic (n = 67)</th>
<th>6 wk posttraumatic (n = 67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Ib</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IIa</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>IIb</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>IIIa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IIIb</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

The Journal of Knee Surgery

Fig. 1 Medial collateral ligament repair with fiber wire sutures and blocking screws.
Lysholm score was 94 (85–100 points) after treatment. At the final follow-up, 61 of 67 patients (91%) had a negative or a Lachman grade A result and all patients (100%) had a negative pivot shift test and were graded as A according to the IKDC scores. Only six patients (9%) had Lachman grade B with firm endpoint in the recent follow-up examination. Occurrence of slight anteroposterior instability (Lachman grade B) was similar in patients with operative and nonoperatively treated MCL lesions (►Table 4). Preoperatively, 48 of 67 patients showed Lachman test grade C and 19 out of 67 patients showed grade D according to IKDC and all patients had positive pivot shift test. Seven patients showed wound complications in the clinical course. Four patients developed hypertrophic scar tissue and three patients prolonged wound secretion with abacterial inflammation. No infections or other complications were found at our recent follow-up. No revision surgery was needed up to date.

Discussion

The most important finding of this study was that AMRI seems to be a crucial factor for the decision between surgical and nonsurgical treatment of concomitant MCL lesions. Therefore, it should be considered in the treatment decision of ACL/MCL injuries. Especially in grade II MCL lesions, evaluation of AMRI could add important information. The presented treatment concept for concomitant MCL lesions could be proposed as an injury classification and a treatment algorithm, because it contains simple usage in clinical workup and is based on important clinical parameters as the grade of the MCL lesion and the presence of AMRI.

It was shown that AMRI happens when the medial sided structures are injured and the ACL is ruptured.9,10 Currently, it is simply demonstrated that AMRI is a mandatory complication in an ACL rupture and complete MCL lesion with an insufficiency of the PMC.11,12 However, there is no clinical data at which certain grade of a concomitant MCL lesion AMRI occurs and the role of AMRI in the treatment decision remains uncertain.2,9,10 In our opinion, AMRI might be a clinical sign for a noncompensable medial injury. In patients with the presence of AMRI, a singular ACL reconstruction could be lacking in restoring stable knee joint kinematics. Therefore, AMRI might be a key factor to decide between a surgical and nonsurgical treatment of the concomitant MCL lesion. It is a

![Fig. 2 Proposal of treatment algorithm for patients with anterior cruciate ligament (ACL)/medial collateral ligament (MCL) injury.](image)

Table 2 Patients characteristics at final follow-up (median; range)

<table>
<thead>
<tr>
<th>Concomitant MCL lesion</th>
<th>Valgus instability (IKDC grade A)</th>
<th>Anterior instability (IKDC grade A)</th>
<th>AMRI</th>
<th>Subjective score (IKDC grade A)</th>
<th>Lysholm score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>100%</td>
<td>90%</td>
<td>0%</td>
<td>94%</td>
<td>95; (90–100)</td>
</tr>
<tr>
<td>Type II</td>
<td>95%</td>
<td>91%</td>
<td>0%</td>
<td>81%</td>
<td>94; (85–100)</td>
</tr>
<tr>
<td>Type III</td>
<td>87%</td>
<td>93%</td>
<td>0%</td>
<td>80%</td>
<td>90; (85–100)</td>
</tr>
</tbody>
</table>

Abbreviations: AMRI, anteromedial rotatory instability; IKDC, International Knee Documentation Committee; MCL, medial collateral ligament.
In the literature, the management of concomitant MCL lesions has been addressed in several studies. While some studies have reported excellent outcomes after operative treatment, others have found similar results with nonoperative management. The heterogeneity of the treatment results across studies is a significant challenge.

Treatment Strategies of Concomitant MCL Lesions in the Literature

The treatment of concomitant MCL lesions is evaluated in several studies in the literature. There is a general agreement on the fact that an isolated lesion of the MCL heals satisfactorily without an operative intervention. However, for concomitant MCL lesions, there is little consensus regarding a surgical or nonsurgical treatment regime. The conservative treatment of a concomitant grade I MCL lesion seems appropriate, because of a limited injury to the medial structures and a preserved stability of the ligament. This was confirmed by several studies. In contrast, the treatment strategies for concomitant grade II and III MCL lesions are nonuniform. In concomitant grade II MCL lesions, different results after a surgical and nonsurgical treatment were reported. The treatment results of grade III MCL lesions are equally inconsistent and the treatment strategies differ. In a prospective trial, an increased valgus opening was found at the final follow-up after reconstruction of the ACL alone. In contrast, other prospective trials reported excellent treatment results after an ACL reconstruction alone. Excellent results at final follow-up were also shown after surgical treatment of both ACL and MCL in patients with ACL ruptures and grade III MCL lesions in another study.

Grading of Isolated and Combined MCL Lesions

Furthermore, a crucial problem of most studies addressing MCL injuries is the inconsistent grading of the MCL lesions. Existing classifications of MCL lesions are nonuniform and lead to a confusing injury specification with intermingling of the injury severity and the ligament laxity. In several studies, the MCL lesion was graded by valgus stress test in 30-degree flexion alone and the extend of the instability was measured in millimeters. If the MCL, however, was tested only in 20- to 30-degree flexion, a grade II lesion could be overestimated and hence classified in a grade III lesion. Therefore, the treatment results of several studies seem disputable and it remains unclear whether a nonsurgical treatment of grade III MCL lesions is sufficient. At present, the classifications of isolated MCL lesions are also used for concomitant MCL lesions in patients with ACL rupture. The authors of this study therefore prefer the classification of Fetto and Marshall because it documents the instability from loss of all medial-sided structures, with evaluation of MCL in 0- and 30-degree flexion, which may affect the treatment options. To our believe in combined ACL/MCL injuries, this classification should be expanded with an assessment of AMRI as proposed in this study to detect the extent of the injury and find the appropriate treatment strategy.

Timing of Surgical Intervention in Combined ACL/MCL Injuries

The timing of ACL surgery in patients with a combined ACL–MCL injury remains controversial. Because of the fear of

Table 4 Outcome results at final follow-up of patients with operatively and nonoperatively treated MCL lesions (median; range)

<table>
<thead>
<tr>
<th>Concomitant MCL lesion</th>
<th>Valgus instability (IKDC grade A)</th>
<th>Anterior instability (IKDC grade A)</th>
<th>AMRI</th>
<th>Subjective score (IKDC grade A)</th>
<th>Lysholm score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonoperative</td>
<td>100%</td>
<td>90%</td>
<td>0%</td>
<td>94%</td>
<td>94.5; (90–100)</td>
</tr>
<tr>
<td>Operative</td>
<td>89%</td>
<td>92%</td>
<td>0%</td>
<td>80%</td>
<td>92; (85–100)</td>
</tr>
</tbody>
</table>

Abbreviations: AMRI, anteromedial rotatory instability; IKDC, International Knee Documentation Committee; MCL, medial collateral ligament.
affeoperative versus nonoperative treatment specificaiton is small and the analysis is retrospective and uncon-reduced at the
the number of the patients with a MCL lesion type IIB was
healing and downgrading of the MCL lesion is possible, as
Moreover, it was shown in this study that spontaneous
reconstruction is also well documented especially in comb-
ined ligament injuries.2,23,24,29,39,40 Moreover, there is huge
evidence that the MCL can heal spontaneously without an
early reconstruction of the ACL.2,15,21,24,26 As a consequence
of these disagreements, an accepted treatment algorithm in
the recent literature does not exist. The authors of this study
suggest that the possibility of a conservative healing should
be awaited. In the opinion of the authors, 6 weeks is an
appropriate period to assess the healing process of the MCL.
Moreover, it was shown in this study that spontaneous
healing and downgrading of the MCL lesion is possible, as
the number of the patients with a MCL lesion type IIB was
reduced at the final classification after 6 weeks compared
with the acute posttraumatic situation.

Surgical Treatment of Concomitant MCL Lesion
In this study, the surgical treatment of a concomitant MCL
lesion was performed by strengthening and reattaching of
the ligament. Because of the thickness and collagenous micro-
structure of the MCL, endogenous scar tissue enables a
sufficient re-tensioning 6 weeks posttraumatic and a tendon
augmentation is not necessary. Moreover, the location of
the MCL lesion is not important with this surgical technique. A
repair of the PMC was additionally performed in a technique
according to Hughston3 to restore the rotational stability.
Treatment consisting of this surgical technique and according
to the introduced treatment algorithm led to a normal or
nearly normal (grade A or B) ligament stability and subjective
scores according to IKDC in all patients. It should be men-
tioned that these results are in contrast to other studies which
reported poorer results after a MCL/PMC repair.11,12,41–43
However, most patients in these studies had suffered from
a multiligament or chronic ligament injury which indicates a
more severe and complex knee injury.11,12 In these patients, a
MCL/PMC reconstruction with auto-/allograft might be more
sufficient.

This study contains several limitations. The patient popu-
lation is small and the analysis is retrospective and un-con-
trolled. Comparative trials are requested in the future to look
at operative versus nonoperative treatment specifically of the
type IIB lesions. Moreover, the diagnosis of AMRI was quite
subjective and based on clinical tests exclusively. However,
AMRI is a dynamic finding and the diagnosis is not possible by
imaging tools. Furthermore, it should be mentioned that the
patient population of this study was selective with high
sportive demands, which limits a global validity. A therapy
regime of another patient population might be more conser-
ватive with similar results. Therefore, complementary studies
are needed in the future to estimate the value of the presented
results.

Conclusion
AMRI seems to be a crucial factor for the decision between
surgical and nonsurgical treatment of concomitant MCL
lesions and should be considered in the treatment decision.
Especially in grade II MCL lesions, evaluation of AMRI could
add important information. The presented treatment concept
for concomitant MCL lesions could be proposed as an injury
classification and a treatment algorithm in this kind of injury.

References
1 Miyasaka KC, Daniel DM, Stone ML, Hirshman P. The incidence of
knee ligaments in the general population. Am J Knee Surg
1991;4:3–8
2 Grant JA, Tannenbaum E, Miller BS, Bedi A. Treatment of combined
complete tears of the anterior cruciate and medial collateral
3 Hughston JC. The importance of the posterior oblique ligament in
repairs of acute tears of the medial ligaments in knees with and
without an associated rupture of the anterior cruciate ligament.
1328–1344
4 Strehl A, Eggli S. The value of conservative treatment in ruptures of
5 Fetto JF, Marshall JL. Medial collateral ligament injuries of the
206–218
6 Phisitkul P, James SL, Wolf BR, Amendola A. MCL injuries of the
7 Sankar WN, Wells L, Sennett BJ, Wiesel BB, Ganley TJ. Combined
anterior cruciate ligament and medial collateral ligament injuries
8 Zhang H, Sun Y, Han X, et al. Simultaneous reconstruction of the
anterior cruciate ligament and medial collateral ligament injuries
in patients with chronic ACL–MCL lesions: a minimum 2-year fol-
9 Griffith CJ, LaPrade RF, Johansen S, Armitage B, Wijdicks C,
Engebretsen L. Medial knee injury: Part 1, static function of the
individual components of the main medial knee structures. Am
10 Kurimura M, Matsumoto H, Fujikawa K, Toyama Y. Factors for the
presence of anteromedial rotatory instability of the knee. J Orthop
11 Stannard JP. Medial and postero medial instability of the knee:
18(4):263–268
12 Stannard JP, Black BS, Azbell C, Volgas DA. Postero medial corner
13 Grood ES, Noyes FR, Butler DL, Suntay WJ. Ligamentous and capsular
restraints preventing straight medial and lateral laxity in intact
14 Nakamura N, Horibe T, Toritsuka Y, Mitsuoka T, Yoshikawa H,
Shino K. Acute grade III medial collateral ligament injury of the
knee associated with anterior cruciate ligament tear. The useful-
ness of magnetic resonance imaging in determining a treatment